Torch for Deep Learning
نویسندگان
چکیده
Deep learning methods have resulted in significant performance improvements in several application domains and as such several software frameworks have been developed to facilitate their implementation. This paper presents a comparative study of four deep learning frameworks, namely Caffe, Neon, Theano, and Torch, on three aspects: extensibility, hardware utilization, and speed. The study is performed on several types of deep learning architectures and we evaluate the performance of the above frameworks when employed on a single machine for both (multi-threaded) CPU and GPU (Nvidia Titan X) settings. The speed performance metrics used here include the gradient computation time, which is important during the training phase of deep networks, and the forward time, which is important from the deployment perspective of trained networks. For convolutional networks, we also report how each of these frameworks support various convolutional algorithms and their corresponding performance. From our experiments, we observe that Theano and Torch are the most easily extensible frameworks. We observe that Torch is best suited for any deep architecture on CPU, followed by Theano. It also achieves the best performance on the GPU for large convolutional and fully connected networks, followed closely by Neon. Theano achieves the best performance on GPU for training and deployment of LSTM networks. Finally Caffe is the easiest for evaluating the performance of standard deep architectures.
منابع مشابه
Comparative Study of Deep Learning Software Frameworks
Deep learning methods have resulted in significant performance improvements in several application domains and as such several software frameworks have been developed to facilitate their implementation. This paper presents a comparative study of four deep learning frameworks, namely Caffe, Neon, Theano, and Torch, on three aspects: extensibility, hardware utilization, and speed. The study is pe...
متن کاملTorchCraft: a Library for Machine Learning Research on Real-Time Strategy Games
We present TorchCraft, a library that enables deep learning research on Real-Time Strategy (RTS) games such as StarCraft: Brood War, by making it easier to control these games from a machine learning framework, here Torch [9]. This white paper argues for using RTS games as a benchmark for AI research, and describes the design and components of TorchCraft.
متن کاملcltorch: a Hardware-Agnostic Backend for the Torch Deep Neural Network Library, Based on OpenCL
This paper presents cltorch, a hardware-agnostic backend for the Torch neural network framework. cltorch enables training of deep neural networks on GPUs from diverse hardware vendors, including AMD, NVIDIA, and Intel. cltorch contains sufficient implementation to run models such as AlexNet, VGG, Overfeat, and GoogleNet. It is written using the OpenCL language, a portable compute language, gove...
متن کاملWolf in Sheep's Clothing - The Downscaling Attack Against Deep Learning Applications
This paper considers security risks buried in the data processing pipeline in common deep learning applications. Deep learning models usually assume a fixed scale for their training and input data. To allow deep learning applications to handle a wide range of input data, popular frameworks, such as Caffe, TensorFlow, and Torch, all provide data scaling functions to resize input to the dimension...
متن کاملSecurity Risks in Deep Learning Implementations
Advance in deep learning algorithms overshadows their security risk in software implementations. This paper discloses a set of vulnerabilities in popular deep learning frameworks including Caffe, TensorFlow, and Torch. Contrast to the small code size of deep learning models, these deep learning frameworks are complex and contain heavy dependencies on numerous open source packages. This paper co...
متن کامل